E6.4: State Hubble's law.
E6.6: Explain how the Hubble constant may be determined.
In the 1920s, Edwin Hubble plotted the distance between the Earth and distant galaxies, and their recession speed against each other- he realized that the recession speed was directly related to the distance to the galaxy. This supports the theory that the universe is EXPANDING.
Source: Study Guide, Tom Kirk
Where v= recession velocity- this is calculated by finding the RED SHIFT of the galaxies,
and d= distance between the Earth and the galaxy- calculated using either the STELLAR PARALLAX, SPECTROSCOPIC PARALLAX or CEPHEID VARIABLE methods.
Source: Heinemann HL Physics, Chris Hamper
NOTE: REMEMBER THE UNITS.
Distance: Mpc
Recession Velocity: Km s^-1
E6.5: Discuss the limitations of Hubble's law.
The data points are scattered about the best fit line on the graph, indicating that there are big RANDOM ERRORS in the measurements.
Also, the gravitational attraction slows down the recession speed of the galaxies, but this is not accounted for, and we assume that the recession speeds are constant.
There are fewer data points near the origin of the line because the galaxies closest to the Earth are red-shifted only SLIGHTLY- the shift is too small, so the errors would be significant.
E6.7: Explain how the Hubble constant may be used to estimate the age of the universe.
At the time of the BIG BANG- all parts of the universe were in the same place. If we know how FAST any 2 parts are moving apart, and how FAR apart they are now, we can calculate the age of the universe :)
Source: Heinemann HL Physics Textbook, Chris Hamper
But, this calculation assumes that the recession velocity is constant. We know that the gravitational attraction slows down the galaxies, so the recession velocity today is much smaller than what it was in the past. Hence, our value is too large, and thus the age of the universe cannot be MORE than 1.35 x 10^10 years.
Raashi's HL Physics
Monday, March 14, 2011
E6: Galaxies and the expanding universe
E6.1: Describe the distribution of galaxies in the universe.
Galaxy= Cluster of stars
Galactic Cluster= Cluster/ group of galaxies- example: The COMA cluster
Source: http://www.damtp.cam.ac.uk/research/gr/public/images/gal_coma.gif
Galactic Supercluster= Cluster of galactic clusters- group of galactic clusters. In general, these superclusters often involve galaxies arranged together in joined filaments or bands, that are arranged as though randomly throughout empty space. Example: Virgo supercluster
Source: http://www.fas.org/irp/imint/docs/rst/Sect20/M33.jpg
E6.2: Explain the red-shift of light from distant galaxies
It was found that not only is the light from all galaxies red-shifted, but the ones that are furthest away are shifted by more, which implies that the universe is EXPANDING.
Hubble's Law: The relationship between the distance of the galaxy and how fast it appears to be moving.
BALLOON ANALAGY- when you blow a balloon with small pieces of paper stuck on it, you can see that the ones further away expand faster (get further away, quicker). However, the pieces of paper do not get bigger- thus the actual GALAXIES don't get bigger.
On a small scale, gravity is strong enough to hold objects together, but on larger scales, expansion takes over, and causes everything to move apart from each other. It has been found that dark energy has been causing the universe to expand at an accelerating rate.
Hubble's law is true everywhere in the universe; either nowhere is the centre of our universe, or everywhere is.
It is the expansion of space, as opposed to the motion of the galaxies through space, that results in the galaxies' relative velocities. This is because: on a large scale, expansion causes everything to move apart- it is the expansion of space and not just the motion of the galaxy, because every galaxy, in every direction tis moving away from us. From any point in the universe, it can be observed that all galaxies are moving away. Space itself is expanding.
Source: Study Guide- Tom Kirk
E6.3: Solve problems involving red-shift and the recession speed of galaxies.
Galaxy= Cluster of stars
Galactic Cluster= Cluster/ group of galaxies- example: The COMA cluster
Source: http://www.damtp.cam.ac.uk/research/gr/public/images/gal_coma.gif
Galactic Supercluster= Cluster of galactic clusters- group of galactic clusters. In general, these superclusters often involve galaxies arranged together in joined filaments or bands, that are arranged as though randomly throughout empty space. Example: Virgo supercluster
Source: http://www.fas.org/irp/imint/docs/rst/Sect20/M33.jpg
E6.2: Explain the red-shift of light from distant galaxies
It was found that not only is the light from all galaxies red-shifted, but the ones that are furthest away are shifted by more, which implies that the universe is EXPANDING.
Hubble's Law: The relationship between the distance of the galaxy and how fast it appears to be moving.
BALLOON ANALAGY- when you blow a balloon with small pieces of paper stuck on it, you can see that the ones further away expand faster (get further away, quicker). However, the pieces of paper do not get bigger- thus the actual GALAXIES don't get bigger.
On a small scale, gravity is strong enough to hold objects together, but on larger scales, expansion takes over, and causes everything to move apart from each other. It has been found that dark energy has been causing the universe to expand at an accelerating rate.
Hubble's law is true everywhere in the universe; either nowhere is the centre of our universe, or everywhere is.
It is the expansion of space, as opposed to the motion of the galaxies through space, that results in the galaxies' relative velocities. This is because: on a large scale, expansion causes everything to move apart- it is the expansion of space and not just the motion of the galaxy, because every galaxy, in every direction tis moving away from us. From any point in the universe, it can be observed that all galaxies are moving away. Space itself is expanding.
Source: Study Guide- Tom Kirk
E6.3: Solve problems involving red-shift and the recession speed of galaxies.
Sunday, March 13, 2011
E5- Stellar Processes and Stellar Evolution
E5.1: Describe the conditions that initiate fusion in a star.
Stars form from gas clouds and dust clouds; they cannot form by themselves because the gravitational force is not big enough to pull the particles together; something is needed to COMPRESS the cloud.
This could be a SUPERNOVA or a COLLISION between 2 dust clouds-as a result, the particles become closer and the gravitational force becomes sufficient to start pulling the particles together.
As they are pulled together, the gravitational potential energy is converted to kinetic energy causing an increase in the temperature. The increase in temperature causes an outward pressure that pushes against the gravitational attraction.
Also as the particles get closer together the force between them increases causing a rise in the pressure of the dust cloud.
However, as atoms get closer, the gravitational force increases so the gas continues to collapse and get hot at an ever-increasing rate.
FUSION STARTS:
As the cloud collapses, a dense core is formed by a cloud of gas and dust. The centre of the dense core rapidly contracts, resulting in high temperature and pressure. This star= PROTOSTAR- gives out light due to its high temperature, but isn't visible because it is surrounded by a cloud of gas.
• PRE-MAIN SEQUENCE STAR: After around 10^5 years of mass increase, the radiation from the protostar blows the dust cloud away and the star stabilises.
The core continues to contract and heat up until the atoms are moving fast enough for fusion to take place. Since hydrogen is so abundant in the universe, it follows that this gas is mainly hydrogen so the fusion that takes place is the fusion of hydrogren nuclei:
Once fusion starts, the increase in temperature causes greater pressure, balancing the inward force of gravity. THE STAR STOPS CONTRACTING AND BECOMES A MAIN SEQUENCE STAR.
E5.2: State the effect of a star's mass on the end product of nuclear fusion.
LOW MASS STAR: undergoes HELIUM synthesis
HIGH MASS STAR: undergoes IRON synthesis (in its core)- Fe has the greatest binding energy per nucleon, and thus it is the most stable element.
A star cannot continue in its main sequence state forever- it fuses hydrogen into helium. At some point, the hydrogen in its core will become rare, so the fusion will happen less often. Thus, the star is no longer in equilibrium, and the gravitational force will cause the core to collapse again.
The collapse increases the temperature of the core, and helium fusion is now possible. The net result is for the star to increase in size- the outer layers cool, and so it becomes a red giant star.
If it has sufficient mass, a red giant can continue to fuse higher and higher elements and the process of nucleosynthesis can continue.
This process of nucleosynthesis comes to an end with THE FUSION OF IRON, iron has the highest binding energy per nucleon so the fusion of iron will need to TAKE IN energy, not release energy, therefore star will no longer shine.
E5.3: Outline the changes that take place in nucleosynthesis when a star leaves the main sequence and becomes a red giant.
E5.4: Apply the mass-luminosity relation.
The luminosity of the massive main sequence stars is greater than stars of small mass; this enables us to know where the different stars join the main sequence line. The equation relating mass, m and luminosity, L is:
Stars form from gas clouds and dust clouds; they cannot form by themselves because the gravitational force is not big enough to pull the particles together; something is needed to COMPRESS the cloud.
This could be a SUPERNOVA or a COLLISION between 2 dust clouds-as a result, the particles become closer and the gravitational force becomes sufficient to start pulling the particles together.
As they are pulled together, the gravitational potential energy is converted to kinetic energy causing an increase in the temperature. The increase in temperature causes an outward pressure that pushes against the gravitational attraction.
Also as the particles get closer together the force between them increases causing a rise in the pressure of the dust cloud.
However, as atoms get closer, the gravitational force increases so the gas continues to collapse and get hot at an ever-increasing rate.
FUSION STARTS:
As the cloud collapses, a dense core is formed by a cloud of gas and dust. The centre of the dense core rapidly contracts, resulting in high temperature and pressure. This star= PROTOSTAR- gives out light due to its high temperature, but isn't visible because it is surrounded by a cloud of gas.
• PRE-MAIN SEQUENCE STAR: After around 10^5 years of mass increase, the radiation from the protostar blows the dust cloud away and the star stabilises.
The core continues to contract and heat up until the atoms are moving fast enough for fusion to take place. Since hydrogen is so abundant in the universe, it follows that this gas is mainly hydrogen so the fusion that takes place is the fusion of hydrogren nuclei:
Once fusion starts, the increase in temperature causes greater pressure, balancing the inward force of gravity. THE STAR STOPS CONTRACTING AND BECOMES A MAIN SEQUENCE STAR.
E5.2: State the effect of a star's mass on the end product of nuclear fusion.
LOW MASS STAR: undergoes HELIUM synthesis
HIGH MASS STAR: undergoes IRON synthesis (in its core)- Fe has the greatest binding energy per nucleon, and thus it is the most stable element.
A star cannot continue in its main sequence state forever- it fuses hydrogen into helium. At some point, the hydrogen in its core will become rare, so the fusion will happen less often. Thus, the star is no longer in equilibrium, and the gravitational force will cause the core to collapse again.
The collapse increases the temperature of the core, and helium fusion is now possible. The net result is for the star to increase in size- the outer layers cool, and so it becomes a red giant star.
If it has sufficient mass, a red giant can continue to fuse higher and higher elements and the process of nucleosynthesis can continue.
This process of nucleosynthesis comes to an end with THE FUSION OF IRON, iron has the highest binding energy per nucleon so the fusion of iron will need to TAKE IN energy, not release energy, therefore star will no longer shine.
E5.3: Outline the changes that take place in nucleosynthesis when a star leaves the main sequence and becomes a red giant.
E5.4: Apply the mass-luminosity relation.
The luminosity of the massive main sequence stars is greater than stars of small mass; this enables us to know where the different stars join the main sequence line. The equation relating mass, m and luminosity, L is:
Tuesday, March 8, 2011
E4.8-4.14
E4.8: Distinguish between the terms open, flat and closed when used to describe the development of the universe.
An open universe is one that continues to expand- gravity slows down the rate of expansion, but it is not enough to stop it.
A closed universe is one that will eventually collapse back on itself- the force of gravity is great enough to stop the rate of expansion. This would result in a BIG CRUNCH, the reverse of a BIG BANG.
A flat universe is in between an open and a closed universe- the force of gravity slows the expansion, but theoretically, it takes an infinite time to come to rest.
Image from: Heinemann HL- Chris Hamper
E4.9: Define the term 'critical density' by reference to a flat model of the development of the universe.
The critical density, ρ0, is defined as the theoretical value of the density that would create a flat universe.
15) a)Actual density < Critical density: OPEN universe, Actual density = Critical density: FLAT universe, Actual density > Critical density: CLOSED universe
bi) p= 3 x ((2.7 x 10^-18)^2)/ (8π x 6.67x10^-11)
p= 1.3 x 10^-26 kg m^-3
ii) Determining the equivalent no. of nucleons per unit volume:
(NOT SURE)
E 4.10: Discuss how the density of the universe determines the development of the universe.
The outcome depends on the mass density- the amount of matter per unit volume available to provide gravitational attraction.
If the density is GREATER than the critical density, it will head towards a CLOSED universe, and if it is LOWER than the critical density, it will head towards an OPEN universe.
E4.11: Discuss problems associated with determining the density of the universe.
The density of the universe is not an easy quantity to measure- to determine this, we need to know how much mass it contains- it should be relatively easy to estimate by estimating the number of stars and their average mass. However, we can only see about 10% of the universe- the rest is made up of dark matter, which is too cool for its radiation to be detected. Hence, the estimated value for the mass is inaccurate.
There are a number of possible theories to explain why there is so much dark matter and what it consists of. These include:
-The matter could be found in Massive Astronomical Compact Halo Objects (MACHOs)- these are low mass "failed" stars, or high- mass planets, or could even be black--holes, and would produce little or no light.
-There are some fundamental particles (neutrinos) that exist in huge numbers; it is unknown whether their masses are 0 or very small- if they have some mass, it could account for a lot of the missing mass.
-There may be new particles which we do not know about- Weakly Interacting Massive Particles (WIMPs)
E4.12- State that current scientific evidence suggests that the universe is OPEN.
Current scientific evidence suggest that the universe is open. In 1997, cosmologists discovered that Supernova explostions in distant galaxies showed that the expansion of the universe was accelerating.
So the universe appears to be more open than expected. There must be some other previously unknown force, acting in opposition to gravity, which is pushing the universe apart. This new phenomenon is called 'DARK ENERGY'.
E4.13: Discuss an example of the international nature of recent astrophysics research.
Articles:
http://www.nrao.edu/pr/2009/bhbulge
http://www.research-in-germany.de/53166/2010-09-27-new-astronomical-phenomenon
E4.14 Evaluate arguments related to investing significant sources into researching the nature of the universe.
FOR:
-Understanding the nature of the universe can help us understand philosophical questions such as:
-Why are we here?
-Is there life elsewhere in the universe?
-It is one of the most fundamental and interesting areas for mankind, and thus deserves to be researched.
-This research will give rise to new technology, which may eventually improve the quality of life for many people.
-Life on Earth may become impossible at some time in the future, so we must be able to colonize new planets (:
AGAINST:
- If money is to be allocated to research, we may be able to get better returns from medical research
-The money could be better spent on providing food, shelter and medical care to the millions of people suffering from hunger, homelessness and disease- OPPORTUNITY COST.
-It may be better to fund a large amount of small diverse research than putting lots of funding into one field
-Is the information gained really worth the cost?
An open universe is one that continues to expand- gravity slows down the rate of expansion, but it is not enough to stop it.
A closed universe is one that will eventually collapse back on itself- the force of gravity is great enough to stop the rate of expansion. This would result in a BIG CRUNCH, the reverse of a BIG BANG.
A flat universe is in between an open and a closed universe- the force of gravity slows the expansion, but theoretically, it takes an infinite time to come to rest.
Image from: Heinemann HL- Chris Hamper
E4.9: Define the term 'critical density' by reference to a flat model of the development of the universe.
The critical density, ρ0, is defined as the theoretical value of the density that would create a flat universe.
15) a)Actual density < Critical density: OPEN universe, Actual density = Critical density: FLAT universe, Actual density > Critical density: CLOSED universe
bi) p= 3 x ((2.7 x 10^-18)^2)/ (8π x 6.67x10^-11)
p= 1.3 x 10^-26 kg m^-3
ii) Determining the equivalent no. of nucleons per unit volume:
(NOT SURE)
E 4.10: Discuss how the density of the universe determines the development of the universe.
The outcome depends on the mass density- the amount of matter per unit volume available to provide gravitational attraction.
If the density is GREATER than the critical density, it will head towards a CLOSED universe, and if it is LOWER than the critical density, it will head towards an OPEN universe.
E4.11: Discuss problems associated with determining the density of the universe.
The density of the universe is not an easy quantity to measure- to determine this, we need to know how much mass it contains- it should be relatively easy to estimate by estimating the number of stars and their average mass. However, we can only see about 10% of the universe- the rest is made up of dark matter, which is too cool for its radiation to be detected. Hence, the estimated value for the mass is inaccurate.
There are a number of possible theories to explain why there is so much dark matter and what it consists of. These include:
-The matter could be found in Massive Astronomical Compact Halo Objects (MACHOs)- these are low mass "failed" stars, or high- mass planets, or could even be black--holes, and would produce little or no light.
-There are some fundamental particles (neutrinos) that exist in huge numbers; it is unknown whether their masses are 0 or very small- if they have some mass, it could account for a lot of the missing mass.
-There may be new particles which we do not know about- Weakly Interacting Massive Particles (WIMPs)
E4.12- State that current scientific evidence suggests that the universe is OPEN.
Current scientific evidence suggest that the universe is open. In 1997, cosmologists discovered that Supernova explostions in distant galaxies showed that the expansion of the universe was accelerating.
So the universe appears to be more open than expected. There must be some other previously unknown force, acting in opposition to gravity, which is pushing the universe apart. This new phenomenon is called 'DARK ENERGY'.
E4.13: Discuss an example of the international nature of recent astrophysics research.
Articles:
http://www.nrao.edu/pr/2009/bhbulge
http://www.research-in-germany.de/53166/2010-09-27-new-astronomical-phenomenon
E4.14 Evaluate arguments related to investing significant sources into researching the nature of the universe.
FOR:
-Understanding the nature of the universe can help us understand philosophical questions such as:
-Why are we here?
-Is there life elsewhere in the universe?
-It is one of the most fundamental and interesting areas for mankind, and thus deserves to be researched.
-This research will give rise to new technology, which may eventually improve the quality of life for many people.
-Life on Earth may become impossible at some time in the future, so we must be able to colonize new planets (:
AGAINST:
- If money is to be allocated to research, we may be able to get better returns from medical research
-The money could be better spent on providing food, shelter and medical care to the millions of people suffering from hunger, homelessness and disease- OPPORTUNITY COST.
-It may be better to fund a large amount of small diverse research than putting lots of funding into one field
-Is the information gained really worth the cost?
Saturday, March 5, 2011
E4- Cosmology
E4.1: Describe Newton's model of the universe.
Newton believed that the universe was:
-INFINITE in space and time
-UNIFORM
-STATIC
This implied that they universe was unchanging and contained an infinite number of stars spreading out to infinity.
E4.2: Explain Olber's paradox.
In 1823, Heinrich Olber described a
paradox- ARGUED AGAINST Newton's model.
If Newton's model was right, and there were an infinite number of stationary stars, the nights sky should be BRIGHT as there would be stars no matter which direction you looked in.
Quantitative explanation:
Assumption- the stars are evenly distributed in an infinite number of thin shells, spreading out in layers.
Each star has the same luminosity (L) and it is related to the apparent brightness (b) and the distance (d) by the inverse square law:
So if we imagine a thin shell of stars, with a thickness (T) and at a distance (d), then the volume of the shell would be:
Surface area x Thickness
If there are n stars per unit volume in the shell, then the total number of stars in the shell N will be given by:
This suggests that the total number of stars in the shell is directly proportional to d^2.If we move out to a shell at a greater distance, the stars in that shell will be dimmer according to the inverse square law:
In the more distant shell, there will be more stars . Since the number of stars is directly proportional to the distance squared, and the brightness is inversely proportional to it, the amount of light we receive from the shell should not depend upon the distance.
If there were a billion shells, we would multiply the energy received from one shell by a billion to find the total energy. So if the universe were infinite, the night sky should be infinitely bright.
E4.3: Suggest that the red-shift of light from galaxies indicates that the universe is expanding.
In 1929, Edwin Hubble proposed a law that basically states that the universe is expanding. He examined the absorption spectra of different galaxies, and found that the absorption lines were usually shifted to the red end of the spectrum.
The red-shift of light can be explained by the Doppler effect- the increase in the wavelengths of the spectral lines (red light has a longer wavelength) meant that the galaxies were moving away. Light from almost all galaxies show red-shifts- almost all of them are moving away from us; the universe is expanding.
E4.4: Describe both space and time as originating with the Big Bang.
If the universe is currently expanding, at some time in the past all the galaxies would have been closer together. At some point, all the matter in the observable universe would have been together at the SAME point, approximately 15 billion years ago. This point is known as the Big Bang; on average, the temperature and density of the universe have been decreasing. The rate of expansion has been decreasing because of the gravitational attraction between all the masses in the Universe.
The best way to imagine the expansion is to think of the expansion of space itself, rather than the galaxies expanding into a void. BIG BANG= creation of SPACE and TIME.
E 4.5: Describe the discovery of cosmic microwave background (CMB) radiation by Penzias and Wilson.
Cosmic Microwave Background(CMB) radiation provides evidence for the Big Bang model. It was first observed in 1965 by Penzias and Wilson; they build a radiometer that they intended to use for radio astronomy and satellite communication experiments. However, they found that some radiation was acting as a source of excess noise in the radio receiver; initially the radiation was though to be some sort of contamination, and they tried to remove it by cleaning the receiver.
Penzias and Wilson found that the intensity of the radiation they received, from all directions, had a wavelength in the microwave region. When they plugged this wavelength into the Wien's displacement law equation, it gave a temperature of 2.7 K. The cosmic microwave background radiation is a kind of echo of the original Big Bang still resonating around the universe.
E 4.6: Explain how cosmic radiation in the microwave region is consistent with the Big Bang model.
We know that 2.7K is the ambient temperature of the universe, so CMB radiation provides excellent support of the Big Bang model. The universe has cooled down to this temperature from its extremely hot origin.
E4.7: Suggest how the Big Bang model provides a resolution to Olbers' paradox.
The Big Bang model resolves Olbers' paradox- if galaxies are moving away in all directions, then the radiation from them will be RED-SHIFTED owing to the Doppler effect. This explains why the sky is dark at night, as the light from the receding stars has been shifted into the INFRA-RED region of the electromagnetic spectrum (increased wavelength) and is thus no longer visible to us.
Newton believed that the universe was:
-INFINITE in space and time
-UNIFORM
-STATIC
This implied that they universe was unchanging and contained an infinite number of stars spreading out to infinity.
E4.2: Explain Olber's paradox.
In 1823, Heinrich Olber described a
paradox- ARGUED AGAINST Newton's model.
If Newton's model was right, and there were an infinite number of stationary stars, the nights sky should be BRIGHT as there would be stars no matter which direction you looked in.
Quantitative explanation:
Assumption- the stars are evenly distributed in an infinite number of thin shells, spreading out in layers.
Each star has the same luminosity (L) and it is related to the apparent brightness (b) and the distance (d) by the inverse square law:
So if we imagine a thin shell of stars, with a thickness (T) and at a distance (d), then the volume of the shell would be:
Surface area x Thickness
If there are n stars per unit volume in the shell, then the total number of stars in the shell N will be given by:
This suggests that the total number of stars in the shell is directly proportional to d^2.If we move out to a shell at a greater distance, the stars in that shell will be dimmer according to the inverse square law:
In the more distant shell, there will be more stars . Since the number of stars is directly proportional to the distance squared, and the brightness is inversely proportional to it, the amount of light we receive from the shell should not depend upon the distance.
If there were a billion shells, we would multiply the energy received from one shell by a billion to find the total energy. So if the universe were infinite, the night sky should be infinitely bright.
E4.3: Suggest that the red-shift of light from galaxies indicates that the universe is expanding.
In 1929, Edwin Hubble proposed a law that basically states that the universe is expanding. He examined the absorption spectra of different galaxies, and found that the absorption lines were usually shifted to the red end of the spectrum.
The red-shift of light can be explained by the Doppler effect- the increase in the wavelengths of the spectral lines (red light has a longer wavelength) meant that the galaxies were moving away. Light from almost all galaxies show red-shifts- almost all of them are moving away from us; the universe is expanding.
E4.4: Describe both space and time as originating with the Big Bang.
If the universe is currently expanding, at some time in the past all the galaxies would have been closer together. At some point, all the matter in the observable universe would have been together at the SAME point, approximately 15 billion years ago. This point is known as the Big Bang; on average, the temperature and density of the universe have been decreasing. The rate of expansion has been decreasing because of the gravitational attraction between all the masses in the Universe.
The best way to imagine the expansion is to think of the expansion of space itself, rather than the galaxies expanding into a void. BIG BANG= creation of SPACE and TIME.
E 4.5: Describe the discovery of cosmic microwave background (CMB) radiation by Penzias and Wilson.
Cosmic Microwave Background(CMB) radiation provides evidence for the Big Bang model. It was first observed in 1965 by Penzias and Wilson; they build a radiometer that they intended to use for radio astronomy and satellite communication experiments. However, they found that some radiation was acting as a source of excess noise in the radio receiver; initially the radiation was though to be some sort of contamination, and they tried to remove it by cleaning the receiver.
Penzias and Wilson found that the intensity of the radiation they received, from all directions, had a wavelength in the microwave region. When they plugged this wavelength into the Wien's displacement law equation, it gave a temperature of 2.7 K. The cosmic microwave background radiation is a kind of echo of the original Big Bang still resonating around the universe.
E 4.6: Explain how cosmic radiation in the microwave region is consistent with the Big Bang model.
We know that 2.7K is the ambient temperature of the universe, so CMB radiation provides excellent support of the Big Bang model. The universe has cooled down to this temperature from its extremely hot origin.
E4.7: Suggest how the Big Bang model provides a resolution to Olbers' paradox.
The Big Bang model resolves Olbers' paradox- if galaxies are moving away in all directions, then the radiation from them will be RED-SHIFTED owing to the Doppler effect. This explains why the sky is dark at night, as the light from the receding stars has been shifted into the INFRA-RED region of the electromagnetic spectrum (increased wavelength) and is thus no longer visible to us.
Monday, February 28, 2011
Monday, February 21, 2011
E2- Stellar Radiation
E2.1- State that fusion is the main source of energy for stars
Stars emit a lot of energy- the source for this energy is the fusion of hydrogen into helium- it is a NUCLEAR reaction, and is often referred to as ‘hydrogen burning’. NOTE: not a combustion reaction.
The mass of the products is less than the mass of the reactants- it can be calculated (using Einstein’s equation) that the Sun is losing mass at the rate of 4 x 10^9 kg/s, and eventually all this energy is radiated from the surface.
E2.2- Explain that in a stable star (like the Sun) there is an equilibrium between radiated pressure and gravitational pressure.
As the star radiates energy, there is a force exerted outwards (radiation force), and as this is applied over an area, it is known as the radiation pressure. If there was no counter force, the star would lose its outer layers- thus there must be an equal and opposite force. This force is the gravitational force, towards the centre of the star- gravitational pressure exerted in the opposite direction; these pressures are in equilibrium- EQUAL to each other.
E2.3- Define the LUMINOSITY of a star.
Luminosity (L): the total power radiated by a star (Watts) - OR- the energy emitted per unit time (J/s)
E2.4- Define the APPARENT BRIGHTNESS and state how it is measured.
Apparent brightness: the power INCIDENT on Earth, perpendicular to unit area.
Basically- it is related to the luminosity by the distance the star is from the Earth. If two stars have the same luminosity, the one CLOSER to the Earth will have a greater apparent brightness.
To measure the apparent brightness, a CCD (Charged-couple device) is used- it uses the PHOTO ELECTRIC effect.
E2.5: Apply the Stefan-Boltzmann law to compare the luminosities of different stars.
The Stefan- Boltzmann law relates the energy radiated per unit time to the temperature of a black body. A black body is a perfect absorber and emitter of radiation. The energy emitted per unit time is known as the POWER and in this case, also as the LUMINOSITY.
The law states that the TOTAL ENERGY RADIATED PER UNIT SURFACE AREA IN UNIT TIME FROM A BLACK BODY IS DIRECTLY PROPORTIONAL TO THE FOURTH POWER OF THE KELVIN TEMPERATURE OF THE BODY.
E2.6- State Wien's (displacement) law and apply it to explain the connection between the colour and temperature of stars.
Hot objects emit electromagnetic radiation, and as the temperature reaches 1000 degrees Celsius, some of the radiation will be in the visible region of the spectrum. Stars can be assumed to be PERFECT EMITTERS.
http://astro.unl.edu/classaction/animations/light/bbexplorer.html
These graphs show the spectrum of radiation from black-body emitters at different temperatures. A hot object emits radiation across a broad range, and there is a peak in intensity at a particular wavelength. THE HOTTER THE BODY, the HIGHER the intensity peak, and the SHORTER the wavelength.
The peak wavelength, at which the maximum amount of radiation is emitted, is related to the surface temperature by WIEN'S DISPLACEMENT LAW.
It states that the PEAK wavelength of the emission of a black-body is inversely proportion to its temperature.
If the energy emitted is analysed over a range of wavelengths, and the peak wavelength is determined, then the surface temperature of the star can be determined.
As temperature increases, the total energy emitted increases; this can be seen from the graphs as the area under the curves increases- it is not a linear relationship as the area does not increase evenly.
Stars with high surface temperatures will emit radiation over the full range of visible frequencies, and so they will appear to be white. From Wien's law, we know that stars with lower surface temperatures will emit more light of a higher wavelength, and will thus appear to be red.
QUESTIONS:
5) Wavelength= (2.90 x 10^-3)/T
500 x 10^-9 = (2.90 x 10^-3) / T
T= 5800 K
6) Radius= 3.1 x 10^11
Area= 4 x pi x r^2
=1.2 x 10^24 m
L= 5.67 x 10^-8 x A x T^4
= 5.67 x 10^-8 x 1.2 x 10^24 x (2800)^4
=4.2 x 10^30 Watts
E2.7- Explain how atomic spectra may be used to deduce physical and chemical data for stars.
The radiation from stars is not a perfect continuous spectrum- there are particular wavelengths that are missing.
This is the absorption spectrum for our SUN:
The missing wavelengths correspond to the absorption spectrum of a number of elements.
The absorption is taking place in the outer layers of the star. This means that we have a way of telling what elements exist in the star- at least in its outer layers.
Thus, the chemical composition of a star can be found by analyzing the absorption spectrum.
E2.8- Describe the overall classification system of spectral classes.
Different stars give out different spectra of light- this allows us to classify stars by their SPECTRAL CLASS. Stars that emit the same type of spectrum are allocated to the same spectral class- the different letters correspond to different surface temperatures.
The spectral classes are in order of DECREASING surface temperature-
Orange
Bananas
Are
Filthy
Go
Kill
Monkeys
E2.9- Describe the different types of stars.
SINGLE STARS:
-Red giants: These stars are LARGE and RED- as they are red, they are comparatively COOL. They are one of the later possible stages for a star (our sun will eventually become a RED GIANT). The source of energy is FUSION, but of larger elements than hydrogen.
-White dwarfs: These stars are SMALL and WHITE- as they are white, they are comparatively HOT. They are on e of the final stages for some stars. Fusion is no longer taking place, and a white dwarf is just a hot remnant that is cooling down. Eventually, it will stop giving out light when it becomes sufficiently cool, and will then be known as a BROWN DWARF.
-Cepheid variables: These stars are unstable- they have VARIATION in brightness, and thus a varying luminosity. This is thought to be due to an oscillation in the size of the star. They are RARE, but useful because there is a link between the period of brightness variation and their average luminosity- it can help calculate the distance to some galaxies.
E2.9- Describe the different types of stars.
SINGLE STARS:
-Red giants: These stars are LARGE and RED- as they are red, they are comparatively COOL. They are one of the later possible stages for a star (our sun will eventually become a RED GIANT). The source of energy is FUSION, but of larger elements than hydrogen.
-White dwarfs: These stars are SMALL and WHITE- as they are white, they are comparatively HOT. They are on e of the final stages for some stars. Fusion is no longer taking place, and a white dwarf is just a hot remnant that is cooling down. Eventually, it will stop giving out light when it becomes sufficiently cool, and will then be known as a BROWN DWARF.
-Cepheid variables: These stars are unstable- they have VARIATION in brightness, and thus a varying luminosity. This is thought to be due to an oscillation in the size of the star. They are RARE, but useful because there is a link between the period of brightness variation and their average luminosity- it can help calculate the distance to some galaxies.
Binary stars rotate about their common centre of mass.
E2.10- Discuss the characteristics of spectroscopic and eclipsing binary stars.
Binary stars that can be seen with the naked eye or with a telescope are called VISUAL BINARIES. When the stars are further away, or closer together, visual resolution is more difficult.
A spectroscopic binary star is identified from the analysis of the spectrum of light emitted from the star. Over time, the wavelengths show a periodic shift, or splitting in frequency. This means that as the stars move around their common centre of mass, one star will be approaching as the other is receding.
When the star APPROACHES us, it is BLUE SHIFTED- the wavelengths are smaller so the spectral lines are shifted towards the blue side of the spectrum. As the star RECEDES, it is RED-SHIFTED- longer wavelengths therefore moves to the red-side of the spectrum.
Eclipsing binary stars how a periodic variation in the brightness of light emitted from the star system, This occurs because during their rotation, one star periodically obscures or eclipses the other.
2.11- Identify the general regions of star types on a Hertzberg-Russell (HR) diagram.
For most stars, there is a relationship between surface temperature and luminosity.
The dots on the diagram represent stars, and the scales are not linear. The temperature scale runs BACKWARDS (high temps on the left. Stars increase in size as we move up the main sequence.
The absolute magnitude of a star is the apparent magnitude that it would have IF it was observed from a distance of 10 parsecs- most stars are further than that so they would be brighter if observed from a distance of 10 parsecs. This means their absolute magnitudes are more negative than their apparent magnitudes.
Stars emit a lot of energy- the source for this energy is the fusion of hydrogen into helium- it is a NUCLEAR reaction, and is often referred to as ‘hydrogen burning’. NOTE: not a combustion reaction.
The mass of the products is less than the mass of the reactants- it can be calculated (using Einstein’s equation) that the Sun is losing mass at the rate of 4 x 10^9 kg/s, and eventually all this energy is radiated from the surface.
E2.2- Explain that in a stable star (like the Sun) there is an equilibrium between radiated pressure and gravitational pressure.
As the star radiates energy, there is a force exerted outwards (radiation force), and as this is applied over an area, it is known as the radiation pressure. If there was no counter force, the star would lose its outer layers- thus there must be an equal and opposite force. This force is the gravitational force, towards the centre of the star- gravitational pressure exerted in the opposite direction; these pressures are in equilibrium- EQUAL to each other.
E2.3- Define the LUMINOSITY of a star.
Luminosity (L): the total power radiated by a star (Watts) - OR- the energy emitted per unit time (J/s)
E2.4- Define the APPARENT BRIGHTNESS and state how it is measured.
Apparent brightness: the power INCIDENT on Earth, perpendicular to unit area.
Basically- it is related to the luminosity by the distance the star is from the Earth. If two stars have the same luminosity, the one CLOSER to the Earth will have a greater apparent brightness.
To measure the apparent brightness, a CCD (Charged-couple device) is used- it uses the PHOTO ELECTRIC effect.
E2.5: Apply the Stefan-Boltzmann law to compare the luminosities of different stars.
The Stefan- Boltzmann law relates the energy radiated per unit time to the temperature of a black body. A black body is a perfect absorber and emitter of radiation. The energy emitted per unit time is known as the POWER and in this case, also as the LUMINOSITY.
The law states that the TOTAL ENERGY RADIATED PER UNIT SURFACE AREA IN UNIT TIME FROM A BLACK BODY IS DIRECTLY PROPORTIONAL TO THE FOURTH POWER OF THE KELVIN TEMPERATURE OF THE BODY.
E2.6- State Wien's (displacement) law and apply it to explain the connection between the colour and temperature of stars.
Hot objects emit electromagnetic radiation, and as the temperature reaches 1000 degrees Celsius, some of the radiation will be in the visible region of the spectrum. Stars can be assumed to be PERFECT EMITTERS.
http://astro.unl.edu/classaction/animations/light/bbexplorer.html
These graphs show the spectrum of radiation from black-body emitters at different temperatures. A hot object emits radiation across a broad range, and there is a peak in intensity at a particular wavelength. THE HOTTER THE BODY, the HIGHER the intensity peak, and the SHORTER the wavelength.
The peak wavelength, at which the maximum amount of radiation is emitted, is related to the surface temperature by WIEN'S DISPLACEMENT LAW.
It states that the PEAK wavelength of the emission of a black-body is inversely proportion to its temperature.
If the energy emitted is analysed over a range of wavelengths, and the peak wavelength is determined, then the surface temperature of the star can be determined.
As temperature increases, the total energy emitted increases; this can be seen from the graphs as the area under the curves increases- it is not a linear relationship as the area does not increase evenly.
Stars with high surface temperatures will emit radiation over the full range of visible frequencies, and so they will appear to be white. From Wien's law, we know that stars with lower surface temperatures will emit more light of a higher wavelength, and will thus appear to be red.
QUESTIONS:
5) Wavelength= (2.90 x 10^-3)/T
500 x 10^-9 = (2.90 x 10^-3) / T
T= 5800 K
6) Radius= 3.1 x 10^11
Area= 4 x pi x r^2
=1.2 x 10^24 m
L= 5.67 x 10^-8 x A x T^4
= 5.67 x 10^-8 x 1.2 x 10^24 x (2800)^4
=4.2 x 10^30 Watts
E2.7- Explain how atomic spectra may be used to deduce physical and chemical data for stars.
The radiation from stars is not a perfect continuous spectrum- there are particular wavelengths that are missing.
This is the absorption spectrum for our SUN:
The missing wavelengths correspond to the absorption spectrum of a number of elements.
The absorption is taking place in the outer layers of the star. This means that we have a way of telling what elements exist in the star- at least in its outer layers.
Thus, the chemical composition of a star can be found by analyzing the absorption spectrum.
E2.8- Describe the overall classification system of spectral classes.
Different stars give out different spectra of light- this allows us to classify stars by their SPECTRAL CLASS. Stars that emit the same type of spectrum are allocated to the same spectral class- the different letters correspond to different surface temperatures.
The spectral classes are in order of DECREASING surface temperature-
Orange
Bananas
Are
Filthy
Go
Kill
Monkeys
E2.9- Describe the different types of stars.
SINGLE STARS:
-Red giants: These stars are LARGE and RED- as they are red, they are comparatively COOL. They are one of the later possible stages for a star (our sun will eventually become a RED GIANT). The source of energy is FUSION, but of larger elements than hydrogen.
-White dwarfs: These stars are SMALL and WHITE- as they are white, they are comparatively HOT. They are on e of the final stages for some stars. Fusion is no longer taking place, and a white dwarf is just a hot remnant that is cooling down. Eventually, it will stop giving out light when it becomes sufficiently cool, and will then be known as a BROWN DWARF.
-Cepheid variables: These stars are unstable- they have VARIATION in brightness, and thus a varying luminosity. This is thought to be due to an oscillation in the size of the star. They are RARE, but useful because there is a link between the period of brightness variation and their average luminosity- it can help calculate the distance to some galaxies.
E2.9- Describe the different types of stars.
SINGLE STARS:
-Red giants: These stars are LARGE and RED- as they are red, they are comparatively COOL. They are one of the later possible stages for a star (our sun will eventually become a RED GIANT). The source of energy is FUSION, but of larger elements than hydrogen.
-White dwarfs: These stars are SMALL and WHITE- as they are white, they are comparatively HOT. They are on e of the final stages for some stars. Fusion is no longer taking place, and a white dwarf is just a hot remnant that is cooling down. Eventually, it will stop giving out light when it becomes sufficiently cool, and will then be known as a BROWN DWARF.
-Cepheid variables: These stars are unstable- they have VARIATION in brightness, and thus a varying luminosity. This is thought to be due to an oscillation in the size of the star. They are RARE, but useful because there is a link between the period of brightness variation and their average luminosity- it can help calculate the distance to some galaxies.
Binary stars rotate about their common centre of mass.
E2.10- Discuss the characteristics of spectroscopic and eclipsing binary stars.
Binary stars that can be seen with the naked eye or with a telescope are called VISUAL BINARIES. When the stars are further away, or closer together, visual resolution is more difficult.
A spectroscopic binary star is identified from the analysis of the spectrum of light emitted from the star. Over time, the wavelengths show a periodic shift, or splitting in frequency. This means that as the stars move around their common centre of mass, one star will be approaching as the other is receding.
When the star APPROACHES us, it is BLUE SHIFTED- the wavelengths are smaller so the spectral lines are shifted towards the blue side of the spectrum. As the star RECEDES, it is RED-SHIFTED- longer wavelengths therefore moves to the red-side of the spectrum.
Eclipsing binary stars how a periodic variation in the brightness of light emitted from the star system, This occurs because during their rotation, one star periodically obscures or eclipses the other.
2.11- Identify the general regions of star types on a Hertzberg-Russell (HR) diagram.
For most stars, there is a relationship between surface temperature and luminosity.
The dots on the diagram represent stars, and the scales are not linear. The temperature scale runs BACKWARDS (high temps on the left. Stars increase in size as we move up the main sequence.
The absolute magnitude of a star is the apparent magnitude that it would have IF it was observed from a distance of 10 parsecs- most stars are further than that so they would be brighter if observed from a distance of 10 parsecs. This means their absolute magnitudes are more negative than their apparent magnitudes.
Subscribe to:
Posts (Atom)